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Abstract
Optical internal transitions relevant to experiments based on the optical
detection of far-infrared resonances are computed for the biexciton in a quantum
dot in the strong-confinement regime. Valence sub-band-mixing effects are
taken into account in second-order perturbation theory. The probability of
transition from the ground state is concentrated in a few states with relatively
high excitation energies. Level collisions with oscillator strength transfer are
observed as the magnetic field is raised.

The optical detection of far-infrared resonances [1] (ODR) has proven to be an efficient method
in the study of a sector of the exciton spectrum not accessible to inter-band transitions. Far-
infrared radiation, in resonance with an internal transition, induces changes in the population of
the exciton ground state, changing in this way the amplitude of the luminescence peak. Usually,
in order to tune a particular transition into resonance, a magnetic field is used instead of varying
the frequency of the infrared source. By this means, many of the exciton transitions as well as
electron and hole cyclotron resonance transitions have been clearly observed. In addition to this
important result, the two main conclusions to be extracted from reference [1] are the following:
(a) with reduced dimensions ODR signals are more pronounced; and (b) experimental transition
energies are theoretically reproduced only if valence sub-band-mixing effects are included [2].

On increasing the power of the laser that creates the excitons, new lines corresponding to
multiexcitonic transitions are observed. In the present work, we focus on the main biexciton
line and address the question of what the main transitions to be observed in an ODR experiment
are. As argued below, this question has a non-trivial answer because to many of the low-lying
biexciton states there correspond very small transition probabilities, and thus they are very
unlikely to be experimentally detected.

Following the dictates of conclusion (a) above, we study the biexciton in a quantum dot in
the strong-confinement regime. Very distinct biexcitonic and multiexcitonic lines have been
observed in this regime by means of confocal microscopy techniques [3].

Our model quantum dot is disc shaped with a height w = 8.5 nm. The in-plane con-
finement is parabolic [4], with h̄ωe0 = 7.83 meV for electrons, leading to a characteristic
(oscillator) length of around 12 nm. Oscillator lengths are equal for electrons and holes. This
means that mexyω

e
0 = mhhxyω

hh
0 , where mxy are the in-plane masses. The Kohn–Luttinger (KL)
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parameters for GaAs from reference [2] are used: γ1 = 6.790, γ2 = 1.924, γ3 = 2.681,
κ = 1.2 and q = 0.04. The relative dielectric constant is ε = 12.5.

Hole levels in the dot are computed from the KL Hamiltonian [2,5]. Instead of a numerical
diagonalization, we use second-order perturbation theory to account for the non-diagonal terms
in the KL Hamiltonian. This kind of approximation has proven to capture many of the actual
properties of the hole levels [6]. Keeping the more relevant contributions for thin disc-shaped
dots under low magnetic fields, we get for the heavy-hole energies

Ehhn�kjz = E0
n,�,k,±3/2 +

(
8h̄γ3√

3m0�0w

)2

�E± (1)

where the unperturbed energies are given by

E0
n,�,k,±3/2 = h̄2π2

2mhhz w2
k2 + h̄�hh(2n + |�| + 1)− h̄ωhhc

2
�± µBBghh. (2)

n and � are radial and angular momentum projection quantum numbers of the evolving in-plane
wave function. k labels the functions along the symmetry axis (z-direction). They are taken as
infinite-well functions (assuming, for example, a dot formed from a AlGaAs–GaAs symmetric
well with high enough Al concentration). jz is the total (band) angular momentum projection
along z. The effective frequency �hh is given by

�hh =
√
(ωhhc /2)2 + (ωhh0 )

2

where ωc is the cyclotron frequency. m0 is the electron mass in vacuum, ghh = 3κ + 27q/4 =
3.87 and

�0 =
√
h̄/(mexy�

e).

Expressions similar to equation (2), in which masses and frequencies are correspondingly
replaced and glh = κ + q/4 = 1.21, are written for the light hole. The energy corrections,
�E±, where the + refers to jz = 3/2, take the following form:

�E−
��0 = n(1 + ω̄�2

0)
2

E0
n,�,1,−3/2 − E0

n−1,�+1,2,−1/2

+
(n + � + 1)(1 − ω̄�2

0)
2

E0
n,�,1,−3/2 − E0

n,�+1,2,−1/2

�E−
�<0 = (n + |�|)(1 + ω̄�2

0)
2

E0
n,�,1,−3/2 − E0

n,�+1,2,−1/2

+
(n + 1)(1 − ω̄�2

0)
2

E0
n,�,1,−3/2 − E0

n+1,�+1,2,−1/2

�E+
�>0 = (n + 1)(1 + ω̄�2

0)
2

E0
n,�,1,3/2 − E0

n+1,�−1,2,1/2

+
(n + �)(1 − ω̄�2

0)
2

E0
n,�,1,3/2 − E0

n,�−1,2,1/2

�E+
��0 = (n + |�| + 1)(1 + ω̄�2

0)
2

E0
n,�,1,3/2 − E0

n,�−1,2,1/2

+
n(1 − ω̄�2

0)
2

E0
n,�,1,3/2 − E0

n−1,�−1,2,1/2

(3)

where ω̄ = eB/(2h̄).
The first jz = ±3/2 hole energies obtained from an exact diagonalization of the KL

Hamiltonian are shown in figure 1 as functions of B. For comparison, the unperturbed values
(2) and our approximate energies (1) are also shown, indicating that band-mixing effects may
lead to corrections to the single-particle energies of around 1 meV at B = 5 T.

Heavy-hole energies from (1) are included in the biexciton Hamiltonian. For the wave
function, however, we use the unperturbed functions, neglecting hole mixing1. For example,

1 For the lowest heavy-hole states, the wave function almost coincides with the unperturbed function, and orbital
angular momentum can be taken as a good quantum number. Wave-function mixing becomes important at higher
excitation energies, where other effects like anharmonicity of the lateral potential and finiteness of the barrier along
z may give corrections of the same order to the biexciton energy.
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Figure 1. The lowest jz = ±3/2 states. Dashed line: equation (2); dotted line: equation (1); and
solid line: exact diagonalization of the KL Hamiltonian.

for the state with total electron spin Sez = 1 and total (band) hole angular momentum Jz = 3,
which is created by σ−-polarized light, we write the biexciton spatial wave function in the form

$1,3 = 1

2

∑
Cn1l1,n2l2;n3l3,n4l4{φn1l1(1)φn2l2(2)− φn1l1(2)φn2l2(1)}
× {φ3/2

n3l3
(3)φ3/2

n4l4
(4)− φ3/2

n3l3
(4)φ3/2

n4l4
(3)} (4)

where indices 1 and 2 refer to electrons, 3 and 4 to holes, and the sum runs over states preserving
the total angular momentum projection, M = l1 + l2 + l3 + l4. Up to 16 harmonic oscillator
shells, i.e. 136 single-particle states φ for electrons and 136 for holes, are included in (4).
The resulting large matrices for the biexciton Hamiltonian are diagonalized by means of a
Lanczos algorithm.

The results for the first ten transitions from the lowest Sez = 1, Jz = 3 state (an M = 0
state), induced by σ±-polarized far-infrared radiation (�M = ±1), are presented in figure 2.
Levels with more than 10% transition probability are represented by solid lines, and the
probability is indicated. Levels with probability less than 10% are represented by dashed lines.
We define the normalized probabilities from the expansion coefficient of $final in D±$initial:

prob± = |〈$final|D±|$initial〉|2
〈$initial|D−D+|$initial〉 (5)
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Figure 2. Internal transitions in the Sez = 1, Jz = 3 biexciton. See the explanations in the main text.

where

D± = r1e±iθ1 + r2e±iθ2 − r3e±iθ3 − r4e±iθ4

is the dipole operator for internal σ±-transitions. r, θ are polar coordinates in the plane.
The lowest transitions, with excitation energies below 10 meV, are interpreted as ‘single-

particle’ excitations. Because of their low probabilities, they are unlikely to be detected in an
ODR experiment.

Collective motions, in which the electron cloud oscillates in counterphase with respect to
the hole cloud, account for most of the transition probability. Their excitation energies take
values between 15 and 20 meV (the solid lines). In the biexciton, they are small-scale versions
of the giant-dipole resonances expected for larger multiexcitonic systems [7]. Because of the
difference between electron and hole masses and the magnetic field, the dipole resonance splits
into a few states. The two transitions indicated at B = 0, for example, account for 83% of
the probability. At B = 5 T, there are two states accounting for 60% of the σ +-transition
probability and a single state accounting for 87% of the σ−-probability.

Basically, these dipole excitations are the ones to be registered by means of ODR.
Following only the solid lines, one may notice in σ−:

(i) a ‘state’ with constant excitation energy around 16 meV whose ODR signal becomes very
strong as B is increased; and

(ii) a state starting at around 20 meV whose excitation energy rises abruptly for B > 1 T;
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whereas for σ + we may distinguish:

(iii) a state clearly seen for B � 2 T starting at �E ≈ 15 meV and whose ODR signal
increases;

(iv) a state starting at�E ≈ 17 meV with a very strong ODR signal at low B which decreases
at higher B; and, finally,

(v) a state starting at �E ≈ 20 meV whose ODR signal diffuses as B is raised.

The energy of all of theM = 1 states increases with B.
A careful examination of the transitions shown in figure 2 reveals a complex pattern

of probability transfer as the magnetic field is raised. For example, let us look at the three
‘colliding’ levels at excitation energies around 18 meV for σ +-polarization and B = 2 T. The
transition probabilities are 42.7, 0.3 and 1.0% from bottom to top. After the collision, i.e. at
B = 3 T, the probabilities become 0.0, 16.2 and 22.5% respectively. This means that ODR
signals may experience significant changes even with relatively small variations of B.

Similar results are presented in figure 3 for the singlet (electron), Jz = 0 biexciton. The
lowest state in this sector is also anM = 0 state. Low-lyingM = ±1 dark levels, a ∼15 meV
gap to the dipole resonances and a complex pattern of probability transfer with increasing
magnetic field are also evident in this figure.

In conclusion, we have computed the lowest-lying energy levels and transition probabilities
relevant for the ODR study of the biexciton in a quantum dot. The states that will induce
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Figure 3. As figure 2, but for the singlet (electron), Jz = 0 biexciton.
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the most pronounced ODR signals are collective dipole excitations, with excitation energies
higher than h̄(ωe0 + ωhh0 ). A complex dependence of the transition probabilities on B, leading
to significant variations of the position and depth of ODR signals, is predicted.
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